Chapter 1

Introduction

1.1. Geography

1.1.1. Geographic Settings of the Uherské Hradiště Area

Moravia represents an articulated region extending across the Oder/Odra and Danube watersheds. Its system of valleys connected by narrow gates allows communication in a north-south direction across the European continent. During the last glacial period, this route allowed the migration of both animal herds and groups of humans between the Northern and Eastern European Plains and the Panonian Lowland and further to the Black or Mediterranean seas. This communication route was known during the early historic period as the Amber Route.

Although the title of this book is The Upper Paleolithic on the Middle Course of the Morava River, the book is focused mainly on its most significant section, referred to as the Uherské Hradiště Area, a term Vilém Hrubý introduced into the literature in 1951. There are only two isolated and problematic sites located far to the south from the Uherské Hradiště Area discussed in the text.

There is some question about the definition of the term “Uherské Hradiště Area,” because its definition has changed several times in the course of recent history. At the time of Vilém Hrubý’s (1951:100) surveys, i.e. between 1920 and 1960, the Uherské Hradiště District was an administrative division dating to the first Czechoslovak Republic and was defined as an area bordered by cadastral territory of the town of Napajedla to the north, Veselí nad Moravou to the south, the main crest of the Čríby Hills to the west; on the eastern border, the town of Uherský Brod was placed outside the district. Since 1960, when a new administrative division was introduced, the borders have been different, in particular to the north and east. The cadastral territories of Napajedla, Spytihněv and Halenovice were placed outside the district and the northern border established along the line of the cadastral territories of Kudlovice, Babice, Topolná, and Březolupy. On the east, the former Uherský Brod district was included within this newly-defined district, thus extending it to the Moravia-Slovakia border. In 2003, a new system of administrative regions was established in the Czech Republic. However, these new divisions reflect more political decisions than geomorphology, and the Uherské Hradiště Area is now split between two of these regions – the South Moravia and Zlín regions.

The Uherské Hradiště Area in this work reflects the definition set out by Jiří Svoboda and Tadeáš Czudek (1994). With the exception of a small area in the vicinity of Napajedla, the Zdouny microregion, in accordance with this same definition (Czudek 1994), is outside this area.

Geographically, according to the Czudek’s geomorphological division (Czudek ed. 1972; Czudek 1994), the Uherské Hradiště microregion represents the northern termination of the Vienna Basin (Carpathan intramontaneous Neogene Basin) known as the Lower Morava Valley. The Lower Morava Valley is flanked by the Middle Moravian Carpathians to the west and Slovak-Moravian Carpathians to the east. The Middle Moravian Carpathians are represented by Čríby Hills and the Kyjov Hills, whose maximum elevation is 600 m; however, with in the area in interest their heights range up to 400 m. The Slovak-Moravian Carpathians are represented by Vízovice Highlands, again with a maximum elevation of around 600 m, and elevations in the area of interest ranging up to 400 m. The above mentioned highlands, the Middle Moravian Carpathians and the Slovak-Moravian Carpathians come closest to each other around the town of Napajedla, where they form a one kilometer in length and relatively narrow (ca. 700 m wide) corridor, which represents one of the most important passages in Moravia – the Napajedla Gate. Beyond the Napajedla Gate lies the Upper Morava Valley, which is an Intercarpathian Basin.

Our intensive surveys, carried out between 2000 and 2004, were focused on the slopes bordering the Lower Morava Valley at elevations between 220 m and 400 m. These surveys did cover areas deep into the highlands to the east. Geographically, the area under the study is bordered by the Napajedla Gate to the north, and the spot, where the breadth of Lower Morava Valley doubles, which is ca. 20 km the south of the Napajedla Gate. However, two isolated and somewhat problematic sites, located far to the south, were also included in this study.
The Morava River and its smaller tributaries drain the whole Uherské Hradiště Area. Only two more important rivers flow into the Morava River in this area – the left bank tributaries of the Dřevnice River (beyond the Napajedla Gate) and Olšava River. There are other tributaries, less important, including the Březnice on the left bank, and the (from north to south) Kudlovický, Jankovický, Salaška, and Zlechovský creeks, and Dlouhá River on the right bank of the Morava River.

Using geographic coordinates, the region of interest is located as follows: latitude between 48°50' and 49°11' North, longitude between 17°15' and 17°35' East. On a modern map, the region is bordered by the town of Napajedla to the north and Veselí nad Moravou to the south.

The Uherské Hradiště area lies halfway between the Dolní Věstonice – Pavlov microregion (approximately 65 km to the southwest) and the Předmostí microregion (approximately 40 km to the north). In fact, the Uherské Hradiště area connects these two settlement microregions.

The early medieval towns of Staré Město and Uherské Hradiště were established on the junction of two important trade routes. The first, which starts at the Mediterranean, followed the Danube River, Morava River, and continues to the Baltic Sea, is well known as the Amber Route. This route, in fact, represents the most important Central European north-south route. The second route, which starts in the Lower Morava Valley, then followed the Olšava River, crossed the White Carpathians through the Vlára Pass where it crossed the modern Moravia-Slovakia border, continued on to the Váh Valley and further to the east. Josef Skutil (1940) was the first to point out the fact that these routes follow prehistoric hunting trails. During the last glaciation, hunted herds probably migrated along these routes. In parallel, northern provenience cryptocrystalline siliceous rocks were transported from glacigene sediments (erratic flint) in northern Moravia, Upper Silesia or from outcrops in the Krakow-Częstochowa Jurassic area. In accordance with these facts, i.e. that the “flint” route was utilized for tens of thousands of years and the total weight of cryptocrystalline siliceous rocks many times surpasses the total weight of amber transported, it might be better to rename it the “Flint Route.” The second route, according to Skutil (1940), represents a prehistoric radiolarite trail. However, the structure of Paleolithic occupation along this trail does not support Skutil’s hypothesis. There is a lack of sites flanking this hypothetical route and there is no increase in the use of radiolites on sites located closest to the mouth of the Olšava Valley in the Lower Morava Valley.

1.1.2. Climatic Conditions

During the last glaciation, the entire Uherské Hradiště Area was found in the periglacial zone and the average annual temperature is hypothesized to have been 15°C lower than today (Czudek and Ivan 1992:44). The following paragraph on the current climate may therefore be somewhat misleading. On the other hand, many characteristics, including differences between the uplands and valley, marked air movements and temperature inversions, may have been similar.

At the present time, the Lower Morava Valley is in the T4 Temperate Zone, which is characterized by long, very warm and dry summers, transitional seasons are very short with a warm spring and autumn. Winter is short, mild, and dry to very dry with snow cover lasting only very briefly. The T4 Zone is interspersed with T2 areas on the surrounding upland areas. T2 is characterized by a somewhat shorter, wetter and cooler summer. The Chřiby Hills are included in the MT11 Zone (moderately temperate region) (Demek et al. 1992, Fig. 81).
Prevailing winds in the Lower Morava Valley are southeasterly as they are in other southern Moravian valleys (Demek et al. 1992, Fig. 80). The Lower Morava Valley is one of the windiest areas in Moravia with average annual wind speeds of 2.5 mps (9 kmph) (Demek et al. 1992:146). The northern section of the Lower Morava Valley is one of the areas most frequently subject to temperature inversions (Demek et al. 1992, Fig. 82).

In the second half of the twentieth century, the average year temperatures ranged between 8-9°C (Demek et al. 1992, Fig. 74) and average annual precipitation ranged between 600 and 700 mm (Demek et al. 1992, Fig. 75).

1.1.3. The Geography of Paleolithic Settlement in the Uherské Hradiště Area

Paleolithic settlement strategies in the Uherské Hradiště area seem to have preferred available positions on hilltops or the slopes of those hilltops, which flanked the river and allow a good outlook and control over the countryside. Using cultural units, the Paleolithic occupation may be divided into three main groups: Gravettian, Morava-type Aurignacian, and non-diagnostic collections (the majority of which are probably Aurignacian). Compelling evidence for the presence of different cultural unit within the Uherské Hradiště area has not yet been discovered.

Generally, the Gravettian sites are located on the margins of the highlands within sight of the Morava River (the only exception is Bošice-Chrástka), on the slopes of the strategically located hilltops at altitudes between 188-290 m (relative altitude ranges between 8-108 m above the current level of the Morava River). While Aurignacian sites also follow the Morava River, in comparison with the location of Gravettian sites, they are located further from the river on top of strategically located hilltops or ridges (at altitudes between 290-350 m) and deep in the highlands (cf. Svoboda 1995a; Svoboda et al. 1996; Škrdla and Svoboda 1998; Škrdla and Lukáš 2000; Oliva 1998a).

There is a series of mineral springs, which are as a consequence of neotectonic activity often sulfuric, in the Uherské Hradiště Area (cf. Květ and Kačura 1976; Škrdla and Lukáš 2000). These springs are often located in the vicinity of sites (or conversely, sites are located in the vicinity of the springs) and may have been used as sources of running water by both people and animals (Škrdla and Nývltová Fišáková 2003). The most well known sulfuric springs are the Slanica spring in Napajedla (this spring is important because of its NaCl content), the Smraďavka spring in Buchlovice, the Ostrožská Nová Ves spa and other smaller springs (in Břestek, Halenkovice, etc., Květ and Kačura 1976). Aquifered sediments indicate the probability of a water source within the Jarošov site cluster (cf. Seitl and Valoch 1998).

1.2. Geology

1.2.1. Geological Composition of the Uherské Hradiště Area

Geologically, the Uherské Hradiště Area is made up of Cenozoic sedimentary rocks. The only exception is represented by islands of neovolcanic outcrops along the Moravia-Slovakia border. The area is composed of two basic geological units: the Flysch Belt and the Vienna Basin (Ivan and Havlíček 1992; Ctyroký and Stráník 1995). The Flysch Belt is represented predominantly by the Rača Unit of the Magura Flysch Group of nappes, which includes orographically the Chříby Hills (including the Kyjov Hills), the Vízovice Highlands (generally north of the Oľšava River), and the White Carpathians. Only a small part of the area is composed of the Bystrica Unit of the Magura Flysch Group of nappes, which includes orographically a short strip of the Hostýn-Vsetín Highlands (south of the Oľšava River) and the White Carpathians. The Lower Morava Valley is the northernmost part of the Vienna Basin, an intermontane Neogene Basin. Quaternary deposits are represented by eolian deposits (loess and sand), fluvial deposits (gravel, sand, and flood loam), and proluvial deposits (Czudek 1997).

Calcaneous loeses, which are necessary for the preservation of organic material in sites, accumulated on windward and leeward sides of slopes flanking the Lower Morava Valley, however not on the hilltops. This has resulted in a strong site bias – while Gravettian sites, located on slopes, were covered by loess and preserved in this way, Aurignacian sites, located on hilltops and ridge summits, were not covered by loess and therefore, only stone artifacts are found on the surface.

Fluvial deposits have survived in several levels. Havlíček (1980) described three main gravel terraces of the Morava River. The first is located at 0-12 m, the second 15-25m and the third 30-70 m above the current river
level. However, during our survey, the uppermost relicts of gravels were identified all the way up to 330 m (at Bukáčová in the cadastral territory of Traplice, which is 140 m above the current river level). The youngest, the Würmian terrace, lies partly below the current river level and it is industrially exploited in Ostrožská Nová Ves and Spytihněv. The proluvial deposits are represented by proluvial cones, which were deposited by streams draining the Kyjov Hills, Vizovice Highland and White Carpathians.

Such Holocene sediments are found in the Lower Morava Valley in particular. These sediments are represented mainly by flood loams, which may be up to 10 m in thickness (Czudek 1994:149). The flood loam deposition is correlated with soil erosion (rain washing, gully erosion, land slides) that have been mainly affecting slopes, thus removing traces of possible occupation.

Tectonic movements have also influenced the relief of Uherské Hradiště Area. The Hradiště Graben, filled by Quaternary sediments, represents geologically most recent tectonic unit (Ivan and Havlíček 1992).

1.2.2. Geological Composition in the Vicinity of the Jarošov II Site Cluster

The bedrock within the Jarošov site is composed of the Vsetín Layer (Zlín Formation) of the Rača Unit of the Magura Flysch Group of nappes. On the slopes, eolian and colluvial deposits are developed. Morava River gravel terraces are developed on the foothill.

1.2.3. Raw Materials

1.2.3.1. Raw Materials Available in the Uherské Hradiště Area and its Surroundings

Sandstone and other rocks of the flysch belt

These raw materials did not play a significant role in the Paleolithic lithic technologies in the Uherské Hradiště Area. The local sandstones were probably utilized only marginally, primarily as hearth encircling stones, as indicate fired fragments excavated at Jarošov-Podvršťa. Occasionally a flat pebble of glauconite sandstone, probably in originating in river gravels, was documented at Jarošov-Podvršťa site. A claystone pebble with possible cutmarks was excavated by Valoch at the Jarošov-Kopaniny site (Seitl and Valoch 1998:78). Another, probably modified piece of coarse sandstone (from the Luhačovice layer of flysch), was found by Hrubý in Spytihněv-Němeča (Valoch 1979:30). A more compact, silicified sandstone was occasionally knapped at several sites (e.g. Škr dla and Přichystal 2003). When unmodified (unknapped) rocks of this group are not from an excavated context (i.e. in a non-stratified context, or in surface collections), is often difficult to say if they represent real artifacts or not.

Quartz, Quartzite

It is possible to collect quartz and varieties of quartz in Morava River gravels. These varieties included rock crystal, low quality smoky quartz (Kruťa 1947:41), different quartzites, and occasionally petrified wood (Kruťa 1947:49). Quartz pebbles with traces of use in ochre processing have been recovered at Boršice-Chráška and Jarošov-Podvršťa. Knapped quartzite with cortex remnants, which originated in Devonian basal clastics and was transported by the Morava River from the north, was observed in the surface collection from Boršice/Buchlovice-Elevation Marker 331 (Škr dla and Přichystal 2003).

Krumlovský les-type chert

This raw material is characterized by a typical black cortex (“desert varnish”) resulting from weathering. The main outcrops are located in Cenozoic gravel sediments in the Krumlov Forest. However, this raw material has been documented in other locations, e.g. the Brno Basin (Přichystal 2002:69). Recently, during our intensive surveys, this raw material was identified in the Uherské Hradiště Area. However, the first person to refer to this raw material in the Uherské Hradiště Area, although he did not recognize the type of chert it was, was Skutil (1940:56) in article presenting Hrubý’s finds from the poly-cultural site of Sušice-Kocovy. Slightly later, Hrubý referred to this raw material in an article concerning the Paleolithic occupation of the Uherské Hradiště Area. He wrote that he collected “flint pebble material” (Hrubý 1951:92). This raw material was known to Jiří Chlachula (1990:242) – however he did not identify it as Krumlovský les-type chert.

During our intensive surveys between 2002 and 2004, we recognized this raw material and identified outcrops of it in the region between the villages of Spytihněv and Modrá, on the right bank of the Morava River. It seems that three crests jutting in southeasterly direction from the main ridge of the Chřiby Hills, within the cadastral territories
of Kudlovice and Traplice, are the center of the source area. Pebbles with the characteristic black cortex represent a small percentage of gravel terraces, the relicts of which are on ridges at altitudes between 250-330 m. Occasionally, it is possible to collect re-deposited pebbles in the general vicinity and on lower terraces. The average dimension of pebbles ranges between 5 and 15 cm, the maximum observed dimension was 30 cm (Traplice-Bukáčová).

The age of the gravel deposits containing the chert pebbles is an open question. The gravels including cherts are located some 70-150 above the current river level. According to Havlíček (1980:95-97), the highest level is located at an elevation between 30-70 m above river level, and is Lower Pleistocene, prior to the Cromerian interglacial, in origin. What then is the age of sediments located higher up? And what is their origin – the Krumlovský les-type chert is not a material of Carpathian origin. These questions remain to be resolved by geologists.

The majority of pebbles collected on the surface are of lower quality and its use in knapping is difficult. Therefore, it is possible that the knapped pebbles were exploited from Krumlovský les outcrops rather than from local outcrops. However, the total extent (because they are partly in a forested area) and thickness of the gravel deposits has not been documented. This chert was used for stone tools production from the Paleolithic through the early medieval period as flint stones for fire making.

Boršice-type chert

This recently identified raw material is a chert named after the site Boršice/Buchlovice-Elevation Marker 331 where it was first recognized, defined, and preliminarily given the name Boršice-type chert (Škrdla and Přichystal 2003). Macroscopically, this raw material shows a high degree of similarity with the Olomoučany-type chert from the Moravian Karst; however it does not include the mineral glauconite and has remarkable granular structure that is emphasized by patination. The mass contains inclusions of a brownish material. The preserved parts of the original surface have in several cases a black cortex resembling Krumlovský les-type chert and in other cases brown surface layer. Based on the preserved pebble cortex, the source of these cherts is in gravels. However, these gravels have not yet been definitively identified, although we suspect local sources rather than longer distance import. From this viewpoint, the relatively high share of this chert in the raw material spectra of the Traplice-Bukáčová and Traplice-Kopaniny sites together with the presence of chert fragments without detectable traces of knapping (although such these fragments may have been imported by people), within gravel deposits, may identify a nearby outcrop. With the exception of Boršice/Buchlovice-Elevation Marker 331 site, this raw material was represented by only isolated artifacts at other sites in the area. This raw material was utilized in the Aurignacian, Mesolithic (Škrdla et al. 1997, here reported as Olomoučany chert), and post-Paleolithic.

Troubky/Zdšlavice-type chert

The source area for this raw material is a southwestern vicinity of the village of Zdounky in the Litenčice Upland (Valoch 1986). The cherts originate in coarse gravels including poorly rounded chert and limestone fragments, lying in the Carpathian Foreded in the front of Zláňice unit (Přichystal 2002:71). It is theoretically possible to expect other isolated similar gravel relics within the forested areas of the Chřiby Hills. This raw material was frequently used in the Aurignacian.

Fig. 1.2. Local raw materials.
Radiolarite
Radiolarite is a Jurassic-age silicate; the most frequent of the various varieties are reddish green or green in color, with characteristic radiolaria fossils. Outcrops are distributed over a wide area, beginning with the Austrian Alps to the south and running to the north around the Carpathian arc to Poland. The closest outcrop is in the White Carpathian klippen zone in the vicinity of the Vlára Pass, Slovakia and is the outcrop most accepted as supplying Moravian sites. However, taking into account the frequently documented pebble cortex on several artifacts, radiolarites may have been collected in secondary positions after re-deposition by small local streams to the west, i.e. in Moravia. This raw material is represented in almost all collections from the Uherské Hradiště Area; however, its frequency is relatively low given the presence of nearby outcrops. Although the Uherské Hradiště Area is nearer to the outcrops than the other Moravian settlement areas, the share of radiolarite in the local site raw material spectra is not high in comparison with other Moravian areas. It appears that the nearby outcrops did not impact raw material usage in the Uherské Hradiště Area.

Porcelanite
The well-known source of this red-colored raw material is a quarry near Medlovice. Other outcrops are in areas of neovolcanic activity between Bánov and Bojkovice (Přichystal 2002:74).

Révaite
The presence of this raw material in Morava River gravels was probably referred to by Tomáš Krufa in his list of rocks from the Slovácko Area – “chert with eye of agate features” that had been found by J. Kočič during the quarrying of river gravels somewhere near Staré Město (Krufa 1947:48). Later, Václav Mátl (2000) described in detail this raw material from the Ostrožská Nová Ves quarry. During our survey, we documented it in the gravel terraces above Ostrožská Nová Ves (ca. 200 m), and one atypical fragment was collected in Traplice-Bukáčová (325 m, together with Krumlovský les-type chert, possibly imported by humans). Isolated finds of knapped révaite are known from the Aurignacian sites Boršice/Buchlovice-Elevation Marker 331 (Škrdla and Přichystal 2003), Kvasice and Karolín (Vokáč and Vokáč 2001).

Other “local” cherts
This small and varied group includes atypical cherts documented during our surveys. Outcrops of these cherts are on Morava River terraces or in the forested areas of the Chřiby Hills. This group includes atypical spongolite cherts, atypical varieties of Troubky-Zdislavice cherts, etc. In one case, a nodule of honey-colored chert without diagnostic fossils, embedded in a sandstone pebble was found at the Traplice-Bukáčová site.

Andesite
This raw material is found in a quarry near Bánov. The occasionally recovered pieces of andesite in non-stratified surface collections may not necessarily be connected with prehistoric use, but may represent contamination – andesite is used in road building and maintenance.

Limonite
According to Krufa’s (1947) list of outcrops, this raw material is relatively frequent in the Uherské Hradiště area. However, from the quality viewpoint, forms lower in quality are prevalent (impure, powdery), and more homogenous and compact forms are only rarely present (concretions). This raw material may have been used as a pigment or for other purposes (hide working, etc.)

1.2.3.2. Imported Raw Materials
The raw materials imported from the greater distances are listed with this group. The most important cryptocrystalline siliceous rocks identified are of a northern provenience, cryptocrystalline siliceous rocks from glacial deposits, i.e., erratic flints. These cryptocrystalline siliceous rocks were collected in glacial deposits located in Northern Moravia and Upper Silesia; however, the southernmost outcrops are 60 km from Napajedla in the Moravian Gate. Cryptocrystalline siliceous rocks from the Krakow-Częstochowa Jurassic formation are another raw material imported from north. Occasionally, limno-cryptocrystalline siliceous rocks materials (the nearest outcrops are near the Hron River at a distance of ca 120 km, and in eastern Slovak) and obsidian (the nearest outcrops are located in the Zemplín/Tokai Hills, a distance of ca. 300 km as the crow flies) were imported as raw materials from Slovakia, and rock crystal from the Bohemian-Moravian Highlands (outcrops are located at distance of ca. 100 km as the crow flies).
1.3. History of research in the Uherské Hradiště Area

The history of Paleolithic research in this region may be divided into three main stages. The first stage, starting at the beginning of the twentieth century, is connected with the “Starý Velehrad” association. The association’s members and other interested individuals initiated an intensive field survey of the region, and during World War II they reported several Paleolithic sites in their journal *Sborník velehradský*. Paleolithic finds from Velehrad (Zelnitius 1938:16), Ostrožská Nová Ves (Hrubý 1940a:27; Horsák 1940:93; Horsák 1941:90, 92), Boršice u Buchlovic (Hrubý 1940a), Mařatice (Kříž 1897; Skutil 1940:59), Kunovice (Horsák 1941:89), Derfel (today Sady, Horsák 1942:71), and Tučapy (Horsák 1942:75) were published here. According to a recent critical analysis, the finds from Ostrožská Nová Ves and Boršice may be dated to the Gravettian period. The finds from Tučapy are dated to the Aurignacian period. An isolated and sporadic salvage excavation was carried out in 1938 by Vilém Hrubý in Spytihněv. He excavated two concentrations of Paleolithic artifacts that were associated with bones and charcoal, and one osteological deposit. However, his stratigraphic observations are unclear due to his lack of experience in Pleistocene geology and the circumstances of the rescue excavation on the site of new road construction. During World War II and later, Hrubý continued an intensive survey of the region, and published all recorded Paleolithic artifacts and Pleistocene faunal remains from the region (Hrubý 1951). In his article “The Paleolithic Finds from the Uherské Hradiště Area” (Hrubý 1951), he reported Paleolithic finds from more than 50 locations on the cadastral territories of 25 villages. The publication of this paper brings to a close the first stage of Paleolithic research – a period dominated by enthusiastic amateur archaeologists interested in prehistoric research in their region.

The termination of this first stage parallels the political developments in the country. As a consequence of Communist Party putsch in the beginning of 1948, all associations remaining outside the Communist Party were
disbanded and dissolved. In this case the newly established Communist regime was more thorough than earlier Nazi regime. Another aspect of that period was application of the Soviet models and strategies known euphemistically as “land reform” that resulted in the forcible expropriation of land, collectivization, the joining together of small individual fields and plowing under balks between individual fields. The aims of these proceedings were to disconnect the people from their own land and end their relationship with the countryside. The result was that archaeology lost an important source of information – individual farmers. In addition, the significant impacts on the land and soil and changes to the physical shape of the countryside (e.g. plowing under field balks, slope terracing) were not controlled. Another significant aspect was the total liquidation of amateur archaeology. All research was centralized in the government controlled institutions. This resulted in major gap in surveys in the Uherské Hradiště Area.

The second stage of Paleolithic research saw two salvage excavations and intensive surface surveys, carried out by a new generation of amateur archaeologists. The first salvage excavation was undertaken by Bohuslav Klíma in Boršice-Chrástka. This site had been known since the beginning of the twentieth century and had been surveyed by several amateur archaeologists (Hrubý 1940a; 1951). At the beginning of World War II, in 1939, Hrubý opened a small trench and uncovered isolated bones and artifacts (Hrubý 1951:71). After World War II, František Kalousek (1955) chose this site for a systematic excavation. The results of this excavation were, however, negative. In the early sixties, a former employee of Institute of Archaeology, Bedřich Vyskočil discussed Paleolithic cultural layers disturbed by deep plowing for a new vineyard with Klíma. Klíma carried out a small-scale rescue excavation and in one of his trenches (trench A) documented a cultural layer in situ. Trench A yielded a series of 258 artifacts in association with a small mammoth bone deposit and charcoal (Klíma 1965a,b). Based on stratigraphy and artifact morphology, Klíma attributed the site to the Pavlovian, a classification that was confirmed 35 years later by 14C dating (Svoboda 1999:147). The second salvage excavation was carried out in Jarošov (which is today incorporated within the city of Uherské Hradiště). During the construction of a new sporting area that included a downhill ski run and tennis court,
Rudolf Procházka and later Karel Valoch together with Luděk Seitl excavated two, probably separate, concentrations of faunal remains (mainly mammoth) with isolated stone artifacts (Procházka 1983; Seitl and Valoch 1998). Although these faunal remains were not dated, Procházka as well as Seitl and Valoch attributed them to the Gravettian. In 2003, Alexander Verpoorte (personal comm.) dated a fragment of the mammoth humerus from Valoch’s excavation. Another date was received from mammoth milk molar from a re-excavation in the area of Procházka’s excavation (Škrdla 2004). At the same time, surface surveys carried out by amateur and professional archaeologists continued. However, only the finds collected by Vyskočil were systematically examined by Klíma, who deposited this collection at the IA AS CR Brno (the Gravettian site of Boršice-Chrástka and the Aurignacian site of Boršice/Buchlovice-Elevation Marker 331) and published a smaller collection from the site of Stříbrnice (Klíma 1972); the activities and collections of other individuals were not documented in detail. Klíma (1957a) published one such small collection from the vicinity of Strážnice, however the location of the site as well as the location where materials are currently stored remain unknown. Another surface collection was collected and published by Valoch from the site of Hostějov (on the boundary between the cadastral territories of the villages Osvětimany and Žeravice; Valoch 1985); Klíma (1952) and later Martin Oliva (1998a) surveyed the region of the Napajedla Gate and reported a series of sites on the cadastral territory of the town of Napajedla (Oliva, 1998a, he mentions amateur archaeologists including A. Koutný, M. Šnajdr, and a dr. Králík). Jiří Chlachula (1990) published a collection of possible Early Paleolithic artifacts from Staré Město. The same author rescued isolated artifacts from a dig on the southern periphery of the village of Petrov (Chlachula 1992). Generally, the second period of Paleolithic research is characterized by continuing surface surveys, carried out by both amateur and professional archaeologists, associated with two rescue excavations carried out by professional archaeologists.

The third stage of Paleolithic research begins in the early 1990s, and it is connected with two projects. The first project was carried out by researchers of the IA AS CR Brno, under direction of Jiří Svoboda (Svoboda et al. 1995;
As a part of this project, material from the eponymous site of the Pavlovian – Pavlov I – was published (Svoboda, ed. 1994, 1997), a series of Gravettian sites was re-excavated, and collections from several other sites were reexamined. During field surveys, the site of Jarošov-Podvršťa was discovered, and because a stratified cultural layer had been disturbed by agricultural activities, the site was subjected to salvage excavation between 1996 and 2000 (Škrdla 1999; 2001a; 2002; Škrdla and Kruml 2000; Škrdla and Musil 1999; Škrdla and Lukáš 2000). Almost 20,000 stone artifacts, faunal remains, pieces of red ochre, and baked clay lumps were recovered and recorded. Simultaneously, we checked all the known museum collections containing materials from this region (the IA AS CR Brno, the SM UH, the museum in Zlín, and the Moravian Museum in Brno) and initiated an intensive field survey of the region, with the aim of verifying and relocating previously identified sites and locating new ones. The region under study was digitalized and a three-dimensional map was constructed. All currently published sites were identified in the field and located in absolute coordinates (using GPS). A minimum of 25 new sites were recorded, but only four small sites evidently belong to the Gravettian/Epigravettian (Kněžpole-Hrádek, Kunovice-V úzkých, Mařatice-Kolébky, and Spytihněv-Duchonce), eleven sites are Morava-type Aurignacian (Bílovice/Nedachlebice-Nad vinohrady, Kudlovice-Za Hradskou, Podoli-Strážné, Topolná-Bukovina and Osičná, Traplice-Bukáčová and Kopaniny, Tučapy-Koukolky, Nad horkami, and Nad panským), and the rest representing non-diagnostic collections. Test excavations were carried out at Spytihněv-Duchonce and Napajedla-Brickyard sites. In addition, a series of test pits were excavated on selected sites, these however did not produce any positive results. A parallel project was carried out in the 1990s by Martin Oliva of the Moravian Museum, who carried out surface surveys in the area of Napajedla Gate and published the Gravettian materials from this region (Oliva 1998a); however, this work contained only a limited critical reanalysis of the earlier finds and sites and, as a result, contains a series of inaccuracies. With the exception of Bořek Žižlavský who reported two sites from the cadastral territory of Buchlovice (Žižlavský 1999), no other amateur activities are known from this last stage.